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Abstract. We introduce a model for the persistent current carried by spinless fermions moving
in a ring with a high-dimensional cross section. The effects of both disorder and electron–
electron interaction are considered. It is found that the non-interacting system behaves like
previously considered low-dimensional models. The more complicated interacting/disordered
case is analysed by means of a functional integral which is evaluated in the limit of infinite
dimensionality by expanding in the number of transverse channels. To leading order in this
expansion scheme, the Coulomb interaction does not affect the persistent current. It is found that
the insensitivity to interaction effects is due to the absence of local contributions to the Coulomb
vertex in our model (which in turn is a consequence of the neglect of the electron spin). It is
argued that the physical mechanism suppressing the interaction in the high-dimensional spinless
model applies to the analogous low-dimensional case as well.

1. Introduction

Some years ago it was shown experimentally [1] that metallic rings subject to a magnetic
field may carry a ground-state equilibrium current. Whereas experiments probing the
existence of these so-called persistent currents necessitate the fabrication of mesoscopic
sub-micron devices and have not been feasible until recently, the theoretical analysis of the
phenomenon has a long history that dates back to the thirties [2]. In spite of substantial
theoretical efforts, however, there is still a mismatch of more than one order of magnitude
between the theoretically predicted and the experimentally observed value of the current.
It is now more or less generally believed that the key to the solution of the problem must
lie in taking proper account of the Coulomb interaction between the electrons. Whereas
early attempts to explain the magnitude of the experimentally observed current [3–6] have
focused on the effects of disorder, more recent theoretical analyses emphasize the role of
interactions. Roughly speaking, the group of theoretical approaches can be divided into
(i) perturbative diagrammatic analyses [7, 8], (ii) exact-diagonalization procedures [9, 10],
(iii) Hartree–Fock-type calculations [11, 12] and (iv) the analysis of strictly one-dimensional
(1d) systems [13–20]. Yet in spite of the variety of different approaches, the present state
of the theory still does not allow one to safely draw conclusions as to the role of the
Coulomb interaction. For one thing, none of the above-mentioned approaches can be
applied to aquantitativeanalysis of the experimental data: due to a complex disorder–
renormalization behaviour of the effective Coulomb interaction, the direct diagrammatic
approach to problem (i) has not yet led to conclusive results [21]. The model systems
underlying the numerical analyses (ii) are generally too small to account for the presence
of long-range diffusion modes which govern the transport in the experimental systems. The
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self-consistent Hartree–Fock approach (iii) excludes those diagrams which cause the most
severe divergencies in the general diagrammatic analysis (i); their role remains unclear.
Finally, it is impossible to describe the fundamental transport mechanism in mesoscopic
multi-channelsystems: diffusion, within strictly 1d models (iv). Moreover, 1d systems
do not possess an extended Fermi surface, which implies that the Coulomb interaction
plays a role fundamentally different from that in the higher-dimensional cases. Hence, it is
impossible to reach conclusions based on the physics of 1d systems as to the experimental
situation.

Even if one is primarily interested not in a quantitative explanation of the experimental
data but in obtaining an answer to the more fundamental question of the influence of
Coulomb interactions on the thermodynamics of mesoscopic systems, the present state of
the theory is incomplete. The point is that the above-mentioned theoretical approaches yield
differing results, this being an indication of the fact that they do not describe a common
physical scenario. Even within the restricted class of strictly 1d models, the situation is
diverse. Depending on the microscopic definition of the model considered, the spectrum of
predictions ranges from a drastic interaction-induced enhancement of the current [13] (up
to its value in the clean limit), over a moderate increase [18–20], to a suppression [18–20].
In the more recent stages of the debate, evidence for the importance of theelectron spinhas
accumulated [11]. Depending on the inclusion or exclusion of the electron spin, calculations
performed within one and the same model gave different signs for the interaction-induced
contribution to the current. Altogether, these findings indicate that (a) the theoretical analysis
of the current in the (experimentally realized) multi-channel/disordered/interacting case is
notoriously difficult, and (b) the current in 1d seems to have non-universal features in
the sense that its qualitative behaviour is susceptible to changes in a variety of system
parameters.

To understand better the role of the Coulomb interaction in the multi-channel case, it
may be helpful to look for simplified model systems which still inherit the essential features
of the full problem. In the present paper we discuss a model of interacting electrons in
multi-channel Aharonov–Bohm rings which meets this criterion. The idea is to consider
rings with a cross section of high dimensionalityd − 1� 1 (rather thand = 2 in reality).
We are thus modelling the opposite extreme to the 1d case, namely systems with a quasi-
infinite number of channels. Models of high dimensionality have been introduced earlier
[22, 23], and applied to the analysis of disordered interacting electron systems [24, 25].
Their key advantage in the present context is that (i) in the absence of interactions the
current behaves like it does in the real multi-channel systems (in particular, there is long-
range diffusive motion along the perimeter of the ring), which means that the model shares
at least some of its essential properties with real systems, and (ii) the existence of a small
expansion parameter, namelyd−1, which leads to a substantial simplification of the analysis
of interactions.

In the present paper we discuss the model in its simplest form, i.e. we consider the
case of spinless fermions in the limitd →∞ (i.e. we do not account ford−1-corrections).
As a result we find that the role of spinis of central importance. More precisely, we find
that in the spinless case interactions do not affect the current at all. It will become obvious
from the analysis below that the inclusion of spin would give rise to qualitatively different
interaction contributions which would influence the current. To complete the analysis, one
should thus include the electron spin. Moreover the robustness of the predictions obtained
in the large-d limit should be checked by calculatingd−1-corrections.

Nevertheless we think that it is worthwhile to present the model now, in its present
simple form. For one thing, we believe that our results can help in providing a better
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understanding of the role of spin in the multi-channel case. Second, we hope that the field
theoretical formalism developed in this paper will prove to be of interest in its own right,
insofar as it may serve as a formal starting point for the analysis of related problems in
high-dimensional interacting disordered Fermi systems.

The paper is organized as follows. In section 2 we introduce the model, and discuss
its physics in the clean non-interacting limit. In section 3 we introduce our field theoretical
machinery and consider the effect of disorder while interactions are still ignored. Section 4
deals with the influence of the Coulomb interaction. In section 5 we interpret our result in
a qualitative manner, and discuss its generalization to low-dimensional cases. We give our
conclusions in section 6.

2. Definition of the model and the clean non-interacting limit

In this section we define the model, calculate the current in the simple case where both
interaction and disorder are switched off, and compare the result with previous analyses of
persistent currents in clean multi-channel geometries.

We consider a model of spinless fermions defined on ad-dimensional lattice of constant
spacinga. The system is highly anisotropic in the sense that its extension in thedth
dimension isL‖, andL⊥ � L‖ in the remainingd − 1 dimensions. We impose periodic
(hard-wall) boundary conditions in the longitudinal,‖ (transverse,⊥) direction, thereby
giving the system the geometry of a torus of circumferenceL‖ and cross sectionS = Ld−1

⊥
(cf. figure 1). A persistent current is induced by applying an Aharonov–Bohm flux piercing
the ring.

The Hamiltonian representing the system reads

Ĥ = ĤK + ĤV + ĤI (1)

where

ĤK =
∑
〈x,y〉

a†(x)HK(φ; x, y)a(y)

HK(φ; x, y) = t exp

(
i
φ

φ0

2π

L‖
(x‖ − y‖)

)
×
{

1 x⊥ = y⊥
d−1/2 x⊥ 6= y⊥

ĤV =
∑
x

a†(x)(V (x)− µ)a(x)

ĤI = U

2d

∑
〈x,y〉

n(x)n(y)

(2)

wherex, y are lattice vectors,a denotes a fermionic annihilation operator,n = a†a,
∑
〈x,y〉

is a sum over nearest neighbours,φ the magnetic flux piercing the ring,φ0 the elementary
flux quantum,µ the chemical potential (which we set to a value close to zero corresponding
to an approximately half-filled band), andt and U are positive constants governing the
strength of the hopping matrix element and the Coulomb interaction, respectively. The
scaling factord−1/2 (d−1) multiplying the transverse hopping matrix element (the interaction
Hamiltonian) is needed to keep the expectation value of the kinetic (interaction) energy
finite in the limit d →∞ [22]. In order to allow for non-trivial diffusion in the tangential
direction, the‖-hopping matrix elements are not rescaled. This anisotropic treatment of the
ring is needed to obtain a non-vanishing persistent current in thed →∞ limit. Disorder is
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introduced via a Gaussian potentialV specified by the correlator

V (x) = 0

V (x)V (y) = 1

2πντ
δ(x − y)

(3)

where(· · ·) denotes the disorder average,δ(x − y) = a−dδx,y is the lattice version of the
δ-distribution,τ the mean elastic scattering time, andν is the density of states per volume.

L

S

Φ

Φ

Figure 1. The high-dimensional model system. The circumference of the ring is given byL‖.

In order to get some feeling for the basic physics of the model, let us consider the
simple case where both interaction and disorder are switched off,V = U = 0, and the
temperature is set to 0. Under these conditions,Ĥ takes the form of a clean tight-binding
Hamiltonian which can readily be diagonalized. Its eigenvalues read

ε(k) = −2t

( d−1∑
i=1

1√
2d

cos(kia)+ cos

([
kd − φ

φ0

2π

L‖

]
a

))
= ε⊥(k⊥)+ ε‖(k‖) (4)

whereε⊥ (ε‖) denotes the first (second) term on the rhs of the first equation,

k‖ = kd − φ

φ0

2π

L‖

kd = 2πnd
L‖

nd ∈ Z

ki = πni

L⊥
i = 1 . . . d − 1 ni ∈ N

(5)

and kT
⊥ = (k1, . . . , kd−1)

T. The persistent current of clean two-dimensional tight-binding
models has been discussed previously in reference [26]. To demonstrate that the number of
transverse dimensions does not affect the basic physics, let us briefly outline an analogous
calculation for the high-dimensional case.

The persistent currentI (φ) of a clean multi-channel ring is a quantity which depends
sensitively on various system parameters such as the chemical potential and the system’s
geometry. It readily averages to zero upon slight variation of any of these parameters. A
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more robust quantity is thetypical value of the harmonics of the current,(I 2
l )

1/2, where the
harmonics are defined by the expansion [27]

I (φ) =
∑
l

Il exp

(
i
φ

φ0
2πl

)
and (· · ·) denotes an average over a (microscopically small) range of system sizes and/or
values of the chemical potential. In complete analogy to reference [26] we obtain

I 2
l = I 2

d=1,l

∑
k⊥

sin2(kf (k⊥)a) = I 2
d=1,l

∑
k⊥

(
1−

(
ε⊥(k⊥)

2t

)2)
(6)

whereI 2
d=1,l denotes the square of the typical current of a strictly 1d ring [26], and

kf (k⊥) = a−1 cos−1[(µ− ε⊥(k⊥))/(2t)]
is the ‘Fermi momentum’ associated with the ‘longitudinal’ part of the kinetic energy
µ− ε⊥(k⊥). (Equation (6) relates to the case whereµ = 0.)

Expressions like (6)—that is, sums of the type∑
k⊥

f (ε⊥(k⊥))

where f is some smooth function—will be encountered repeatedly in the following.
In general, the complex structure of the multi-dimensional Fermi surface renders the
computation of these momentum sums difficult. In the case of larged, however, this
source of complexity turns into an advantage in the sense thatstatisticalarguments can be
applied to convert the sum into an integral over a smooth distribution function [23]. As is
reviewed in the appendix,∑

k⊥

f (ε⊥(k⊥))
d→∞' N⊥√

2πt

∫ ∞
−∞

dε exp

(
− ε

2

2t2

)
f (ε) (7)

whereN⊥ = (L⊥/a)d−1 denotes the number of transverse modes. Applying this identity to
the computation of (6), we obtain

I 2
l ' N⊥I 2

d=1,l .

This result conforms with the findings of reference [26] in the sense that the typical multi-
dimensional current is obtained from the one-dimensional current by a multiplication by
the square root of the number of transverse channels. Apart from the fact that this number
grows exponentially withd, the large-d limit does not influence the behaviour of the current.

3. Disorder

In the preceding section we have seen that the dimensionality of the clean model does not
affect its basic physics. How does the situation change if disorder is added? Towards
the end of this section it will become clear that the presence of disorder does not alter
the conclusion drawn above: the persistent current for larged behaves similarly to its
low-dimensional analogue. However, the calculations performed in the following will be
technically quite involved, and the same applies to the next section where the role of the
Coulomb interaction will be considered. Readers who are not willing to make their way
through all of these technicalities are invited to proceed directly to section 5, where our
results are discussed in a qualitative and intuitively accessible way.
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Persistent currents in disordered metallic rings have been the subject of numerous
theoretical analyses [3–6]. In contradiction to the experimental findings, the first calculations
of the persistent current in diffusive rings gave a vanishingly small result. In subsequent
work it turned out [3–5] that a non-negligible value can only be obtained if the strict
conservation of the number of particles in each individual ring is carefully taken into account.
A formula implementing this condition into an effectively grand-canonical description
reads [3–5]

I = −1
2
∂φδN2 (8)

where1 is the mean level spacing at the chemical potential. Equation (8) relates the current
to the fluctuations in the numberN of (single-) particle states below the chemical potential
(here and henceforth we setδX := X−X). The derivation of this identity is based on a few
general thermodynamic identities, and does not depend on specific system characteristics
such as the dimensionality. We may thus apply (8) to a calculation of the persistent current
in the high-dimensional case, and compare the result with previous work.

In the case under consideration, i.e. a weakly disordered multi-channel ring, it would
be most efficient to calculate the current by means of diagrammatic perturbation theory.
Here however we will take an alternative field theoretical route, thereby introducing the
formalism to be applied below to the analysis of the more complex interacting/disordered
problem. For the sake of future reference we perform the calculation ofδN2 within the
finite-temperature formalism (although the temperature will be set to zero throughout this
section).

The information needed to calculate the current is contained in the grand-canonical
potential� and fluctuations thereof. To compute� we employ the replica trick and
functional integration over anticommuting variables. As is shown e.g. in [29],� can be
represented as

� = lim
N→0

N−1
∫
Dψ exp(−S1[ψ ] − S2[ψ ])

S1[ψ ] = −βψ†(iω̂ + µ−HK(φ)− V )ψ
S2[ψ ] = βU

2d

∑
〈x,y〉

∑
ni

∑
α

ψα†
n1
(x)ψα

n2
(x)ψα†

n3
(y)ψα

n4
(y)δn1+n3,n2+n4

(9)

where β = (kT )−1, ψ = {ψα
n (x)}, α = 1, . . . , N, n ∈ Z, is a field of anticommuting

variables,ω̂ = {ωn}, ωn = π(2n + 1)T , and a summation over all indices which are
not indicated explicitly is understood. By the same methods it can be shown that the
particle number fluctuationsδN2 = (∂µδ�)2 entering the expression for the (non-interacting)
persistent current can be computed as

δN2 = β−2 lim
N→0

∂2
µ1,µ2

∣∣∣
µ̂=µ·1N

Z[µ̂] −N2

Z[µ̂] =
∫
D(ψ,ψ†) exp(−S1[ψ, µ̂])

S1[ψ, µ̂] = −βψ†(iω̂ + µ̂−HK(φ)− V )ψ

(10)

whereµ̂ = diag(µ1, . . . , µN) and 1N is the unit matrix in replica space. To compute (10)
we employ the formalism of the non-linearσ -model. For comprehensive introductions into
the replicated finite-temperature version of this model, we refer the reader to the literature
(e.g. [30, 32] and references therein). Here we restrict ourselves to a concise description of
its construction where the emphasis will be on the role of the dimensionality.
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As a first step we introduce a new field9 as follows:

ψ → 9 =
(
ψ

ψ∗

)
. (11)

Expressed in terms of9, the action reads

S1[9, µ̂] = −β
2
9†
[

iω̂ + µ̂−
(
HK(φ) 0

0 HK(−φ)
)
− V

]
9

where the matrix structure corresponds to the two-component space appearing in (11). The
latter will henceforth be called the T-space. The motivation for the component doubling in
(11) is that the newly introduced9 obeys the symmetry relation

9∗ = M9 M = iσ T
2 . (12)

This identity will enable us to take account of the time-reversal symmetry of the model (by
σ T
x , x = 1, 2, 3, we mean the Pauli matrices acting in T-space) [33].

We next average the functional over the disorder, thereby generating a contribution to
the action which is quartic in9. To decouple the latter we introduce an auxiliary field
Q = {Qαβ,ij

nm (x)}, whereα, β = 1, . . . , N (n,m ∈ Z, and i, j = 1, 2) are the replica
(Matsubara, T) indices. The symmetry of theQ-field is chosen so as to be compatible with
(12): Q∗ = MQM−1. A Hubbard–Stratonovich transformation then leads to

Z[µ̂] =
∫
DQ D9 exp(−S1[Q,9, µ̂])

S1[Q,9, µ̂] = −β
2
9†
[
G−1

0 +
i

2τ
Q

]
9 + πν

8τ
trQ2

G−1
0 = iω̂ + µ̂−

(
HK(φ) 0

0 HK(−φ)
)
.

(13)

The Gaussian integration over9 can now be performed, and we arrive at

Z[µ̂] =
∫
DQ exp(−S1[Q, µ̂])

S1[Q, µ̂] = −1

2
tr ln

[
G−1

0 +
i

2τ
Q

]
+ πν

8τ
trQ2

(14)

where the trace extends over all indices (including the spatial ones). To compute (14) we
employ a saddle-point approximation, i.e. we expand the action around the solutions of

δS1[Q, µ̂]

δQ(x)
= 0⇔ Q(x) = i

πν

[
G−1

0 +
i

2τ
Q

]−1

(x, x). (15)

Equation (15) is solved by the manifold of matrices (cf. e.g. reference [30])

Q = T −13T T ∈ G/H
3 = {sgnn δnn′ } ⊗ 1R ⊗ 1T

where

G = {g = {gαβ,ijnm }|g† = g, g∗ = MgM−1}
and

H = {h ∈ G|[h,3] = 0}.
We next expand the action around its spatially constant saddle points. To this end we
substitute a slowly fluctuating field configurationQ(x) ≡ Q0 + δQ(x) into the action,
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and expand to lowest non-vanishing order in bothδQ and ω. Taking into account that
Q(x)2 = Q2

0 = 1⇒ [δQ,Q0]+ = O(δQ2), we obtain

δS1[Q, µ̂] = πν

8τ
tr
∑
q

δQφ(q) δQφ(−q)

− 1

16τ 2V tr
∑
q

δQφ(q) δQφ(−q)
∑
k

G+(k)G−(k + q)

+ i

2V
∑
k

(ImG−(k)) tr
∑
x

[+µ− µ̂+ iω̂]Q(x)+ · · · (16)

where

G± = (µ−HK
∣∣
φ=0± i/(2τ))−1

Qφ(x) = exp(iϕ(x)σ T
3 )Q exp(−iϕ(x)σ T

3 )

and whereϕ(x) = (φ/φ0)2πx/L‖ is a ‘gauge-transformed’Q-matrix, andV = Ld−1
⊥ L‖ the

system volume. In deriving (16) use has been made of the fact that owing to the invariance
of theω = 0 action under the transformationsQ→ T −1

0 Q0T0, T0 = constant,Q0 may be
set to3. We next have to perform thek-momentum summations, and it is this step of the
derivation in which the dimensionality of the model plays a role. The actual calculation of
the sums is a bit lengthy and has been deferred to the appendix. As a result we obtain

1

V
∑
k

ImG−(k) ≡ πν = 1

2tad
(17)

1

V
∑
k

G−(k)G+(k + q) = 2πντ

[
1+Dτ

(
q2
‖ +

1

2d
q2
⊥

)]
(18)

whereD = 4t2a2τ is the diffusion constant of the model. The momenta appearing in
this expression are quantized in units ofπ/L‖ and π/L⊥ respectively. Assuming that
L‖ � (2d)1/2L⊥, we may restrict ourselves to the consideration of the zero mode in the
transverse direction,q⊥ = 0. Under this condition, the insertion of (18) into (16) yields

δS1[Q, µ̂] = πSν

2

∫ L‖

0
tr

(
D

4
∂φQ ∂φQ+ i

[
µ− µ̂+ iω̂

]
Q

)
where the gauge transformation has been reversed, a continuum limit in the longitudinal
direction has been taken,

∂φ = i ∂ + φ

φ0

2π

L‖
[σ T

3 , ]

is a ‘covariant derivative’,S = N⊥ad−1 denotes the transverse cross section of the ring,
and theQ-fields depend only on the longitudinal coordinate.δS1 is the action of a standard
σ -model for a quasi-one-dimensional wire (cf. e.g. [37, 38] for comprehensive reviews).
The dimensionality enters only through the definition of the cross sectionS.

At this point we might stop since the level number fluctuations of this model and their
flux dependence are known [6, 34]. Nonetheless we shall carry the computation ofδN2

on to its end in order to introduce the type of perturbation theory that will be applied to
analyse the interacting model below.

After differentiation with respect tôµ, the expectation value for the level number
fluctuations takes the form

δN2 = −
(
πνS

2β

)2

lim
N→0

〈∫ L‖

0
tr(QE11

R )

∫ L‖

0
tr(QE22

R )+ · · ·
〉

(19)
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where (Eββ
′

R )αα′ = δβαδβ ′α′ , αα
′ = 1, . . . , N , the dots represent terms of the structure

∼tr(QE11
R QE

22
R ) which do not give a significant contribution, and

〈· · ·〉 =
∫
DQ exp(−S1[Q, µ̂ = µ · 1N ])(· · ·).

To compute the functional average, we introduce the parametrization

Q =
(

1 B

−B† 1

)−1(
1
−1

)(
1 B

−B† 1

)
(20)

where the matrix structure corresponds to the sign of the Matsubara index, i.e. the matrix
B = {Bnm} has a positive (negative) indexn (m). We next plug (20) into the functional
and represent the action in terms of the fieldB. Schematically, we obtain

S1[Q] = S(2)1 [B] + S(4)1 [B] + · · ·
whereS(2n)1 [B] denotes the contribution of 2nth order inB. To computeδN2 to leading
order in 1/N⊥ we just need the quadratic termS(2)1 whoseq-representation reads

S
(2)
1 [B] = Vπν

∑
n>0,m<0

∑
q

∑
ij

tr
[
Bijnm(q)

[
Kij
nm(q)

]−1
(B†)jimn(q)

]

Kij
nm(q) =

[
D

(
q + 2φ

φ0

2π

L⊥
(i − j)

)2

+ ωn − ωm
]−1

.

(21)

Combining equations (19) and (20) we obtain

δN2 = −(T πνV)2 lim
N→0

〈[ ∑
n>0,m<0

tr(B12
nm(B

†)21
mn − (12↔ 21))

]2〉
0

(22)

where the superscripts 12 and 21 refer to the replica space and

〈· · ·〉0 =
∫
D(B, B†) exp(−S(2)1 [B])(· · ·).

To compute (22) we employ Wick’s theorem which states that the functional average is
given by the sum of all total contractions, where individual contractions are defined by the
rule〈
· · ·Bαβ,ijnm (q) · · · · · · (B†)β ′α′,j ′i ′m′n′ (q ′) · · ·

〉
= δαα′δββ ′δii ′δjj ′δqq ′δnn′δmm′Kij

nm(q)〈· · ·〉 (23)

and an analogous equation for contractions betweenB andB (B† andB†) which follows
from B

αβ,ij
nm (q) = Mjj ′(B†)

βα,i ′j ′
mn (M−1)i

′i . The application of Wick’s theorem to (22) gives
the result

δN2 = 2T 2
∑

n>0,m<0

∑
q

(
D

[
q + 2φ

φ0

2π

L⊥

]2

+ ωn − ωm
)−2

+ · · · (24)

where the dots denote flux-independent contributions. After analytic continuation from
Matsubara to real frequencies we obtain equation (9) of reference [3]. In other words, the
persistent current of the non-interacting disordered high-dimensional ring coincides with
the current flowing in an analogous low-dimensional geometry. Taking this in combination
with the findings of section 2, we may thus conclude that the dimensionality of the model
does not play a significant role as long as the interaction is switched off.
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4. Interaction and disorder

In the preceding section we have seen that the physics of the two non-interacting models, the
low- and the high-dimensional one, is basically the same. We next enquire into the role of
the Coulomb interaction in the high-dimensional model hoping that our findings will allow
us to draw at least some qualitative conclusions as to the situation in the low-dimensional
case.

a)

b)

x xx y

p

Γ Γ
X Y

p’

p+q p’+q

x x

y y

z z’ z z’

p’pp p’

-p+q -p’+q p+q p’+q

Figure 2. Effective Coulomb vertices in real space (a), and the momentum-space represent-
ation (b). The solid (wavy) lines represent electronic Green functions (the Coulomb amplitude
U ). The momentumq appearing in the bottom part of the figure is small in comparison with
the momentap andp′ (cf. the corresponding remarks in the text).

The field theory that we are constructing is meant to describe the long-range phase-
coherent propagation of electrons. In this context the (momentum representation of the)
vertex representing the nearest-neighbour Coulomb interaction

S2[9] = β

4

∑
p1,p2,p

∑
n1,n2,n

∑
α

9α†
n1
(p1)9

α
n2+n(p1+ p)U(p)9α†

n2
(p2)9

α
n2−n(p2− p)

U(p) = U

d

d∑
j=1

cos(pja)

(25)

contains a lot of irrelevant information. Only those contributions where one of the
frequency/momentum(p, ω) degrees of freedom appearing in the summation is small in the
sense that(p, ω) < O(l−1, τ−1) can give rise to potentially relevant effects (l is the elastic
mean free path of the model). To include these terms in our field theory, we proceed along
the lines of references [30, 31]. In this paper we restrict ourselves to a brief review of the
construction, and refer readers who are interested in details to the original reference. The
interaction vertex is first approximated by

S2[9] = β

4

∑
p,p′,q

∑
n,n′,m

∑
α

∑
ij

9α,i
n (p)9

∗α,i
n+m(p + q)U(q)9α,j

n′+m(p
′ + q)9∗α,jn′ (p′)

− 29α,i
n (p)9

∗α,j
n+m(p + q)U(p′ − p)9α,j

n′+m(p
′ + q)9∗α,in′ (p

′) (26)

where the first (second) term represents the first term (second and third terms) shown in
figure 2 [35] andq < l−1. In other words, the vertex (26) is equivalent to (25) subject to
the constraint that one of the momenta be small. To decouple these two terms by means of
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a Hubbard–Stratonovich transformation, we introduce two auxiliary fieldsX = {Xα,im (q)}
andY = {Yα,ijm (p, q)} and define the functional averages

〈· · ·〉X =
∫
DX exp(−β[Xα,im (q)U(q)X

α,j
−m(q)])(· · ·)

〈· · ·〉Y =
∫
DY exp(−β[Yα,ijm (p, q)U(p − p′)Y α,ji−m (p

′,−q)])(· · ·)
(27)

where a summation over all indices is understood. In analogy to the (disorder) decoupling
scheme outlined in the preceding section, we eliminate the quartic terms (26) by means of
a Gaussian shift, and integrate over the9 field. As a result we obtain

Z[µ̂] =
∫
DQ exp

(
−πν

8τ
trQ2

) 〈
exp

(
1

2
tr ln

[
G−1

0 +
iQ

2τ
+
√

2iUX +
√

8UY

])〉
X,Y

.

We next expand the logarithm to leading order inX andY . This approximation is justified
because these fields fluctuate on scalesT (cf. equation (27)), whereas(

G−1
0 +

i

2τ
Q

)−1

∼ 1/τ � T .

The (Gaussian) integral overX andY is then easily carried out, and we arrive at the effective
action

S[Q] := S[Q, µ̂ = µ · 1N ] = S1[Q] + S2[Q]

S1[Q] = πSν

2

∫ L‖

0
tr

(
D

4
∂φQ ∂φQ− ω̂Q

)
S2[Q] = − S

16βτ 2

∑
α

∑
ij

∑
nn′m

∫ L‖

0

[
0XQ

αα,ii
n+mnQ

αα,jj

n′+mn′ − 20YQ
αα,ij
n+mnQ

αα,ji

n′−mn′
]

where the coupling constants are given by

0X = 1

V
∑
pp′
G+(p)G−(p)U(0)G+(p′)G−(p′)

0Y = 1

V
∑
pp′
G+(p)G−(p)U(p − p′)G+(p′)G−(p′).

(28)

The calculation of the momentum sums in (28) is detailed in the appendix, and yields

0X = (2πντ)2VU

|0Y | < π2

d
(2πντ)2VU.

(29)

At this point the dimensionality of the model begins to play a role. Equations (29) imply
that the Coulomb vertices0Y are negligibly small in thed → ∞ limit. Whereas the
precise computation of the coupling constants is somewhat tedious, the physical origin of
the suppression factor 1/d appearing in (29) is easy to understand. We will come back to
this point in the next section. Here we focus on the consequences of (29) for the perturbative
evaluation of the model.

In analogy to previous analyses [7, 8], we compute the persistent current of the
interacting model directly from the grand-canonical potential [36]. The expectation value
that we have to compute thus reads

I (φ) = −∂φF (φ) = β−1 lim
N→0

N−1 ∂φ

∫
DQ e−S[Q] .
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We next subject this functional to the same perturbative expansion scheme as has been used
to analyse the non-interacting field theory in the preceding section. To this end we insert
the representation (20) intoS2[Q], thereby generating a series

S2[Q] =
∞∑
n=1

S
(2n)
2 [B].

In principle we should now expand the functional around the Gaussian term

exp(−S(2)1 [B] − S(2)2 [B])

and apply Wick’s theorem. Yet the complex index structure of

S
(2)
2 [B] = −ST π

2ν2UV
4

∑
α,ij

∑
Mat.

∫ L‖

0
B
∗αα,ii
n+mn B

α′α′,i ′i ′
n′−mn′ (30)

where ∑
Mat.

:=
∑

n,n′−m>0, n+m,n′<0

suggests treating this term on the same footing as the higher-order termsS(n>2)[B] at the
expense of a perturbation series which is to be continued to infinite order inS

(2)
2 [B]. The

fact that all of theS(2)2 [B] contribute to the same order in the small expansion parameter of
the theory, the inverse of the channel number 1/N⊥, is easy to understand just from power
counting: after contraction, each vertex power(S(2n))l contributes a factor∼ Nl(1−n)

⊥ . For
n = 1 the l-dependence drops out, i.e. all powers(S(2)2 )l contribute to the same order of
perturbation theory. The same argument tells us that verticesS

(2n>2)
2 give rise to small

contributions of higher order in 1/N⊥.
Focusing on theS(2)2 -contribution to the free energy, we obtain

F(φ) ' −β−1 lim
N→0

N−1

〈 ∞∑
l=0

1

l!
(S
(2)
2 [B])l

〉
0

. (31)

It is a straightforward matter to compute the total contraction of this series by Wick’s
theorem. Yet there is no need to do so, for allB-matrix elements appearing in (31) are
diagonal in the T indicesi, j (cf. equation (30)), which means that their contraction yields
nothing but field-independent elementsKii (cf. equations (21) and (23)). In other words, the
dominant interaction-induced contribution to the free energy is insensitive to the magnetic
flux, and does not affect the persistent current.

To understand this result in physical terms, one may visualize the perturbation expansion
diagrammatically. Discussions of the relation between standard diagrammatic perturbation
theory and the perturbative evaluation of the non-linearσ -model can be found in various
places in the literature (cf. e.g. references [37, 39]). Here we merely note that every
contraction of two matricesBij yields a diffusion (cooperon) poleKii (Ki 6=j ) for identical
(non-identical) indicesi and j . The Matsubara frequencies/momentum determining the
pole are specified by the index structure of theB-matrices according to (23). In this
way the contraction of the interaction verticesS(2)2 can be identified as (RPA-corrected)
Fock-type contributions to the free energy (cf. figure 3). Due to the absence of cooperons
(diagrams with a maximal crossing of impurity lines), these diagrams are field independent.
To obtain field-dependent contributions to the free energy, one might proceed to computing
the contraction of higher-order verticesS(2n>2)

2 . According to the above power-counting
argument, however, the resulting diagrams will be of higher order in 1/N⊥ and thereby
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= +

a) b)

Figure 3. Fock-type contributions to the free energy arising from the contraction of one (a) or
six (b) Coulomb verticesS(2)2 (cf. equation (31)). The shaded areas represent the diffusion poles
Kii . Their definition in terms of individual impurity scattering lines (dashed) is indicated in the
bottom part of the figure.

negligibly small. We thus conclude that the Coulomb interaction in our model does not
give rise to a significant contribution to the persistent current.

Why is this so? In the next section we address this question, and comment on the role
of spin and dimensionality.

5. Qualitative considerations

In the non-interacting model, the persistent current depends sensitively on the global
conservation of charge. Even minute charge fluctuations of order unity lead to its complete
destruction. Under these circumstances, the Coulomb interaction—which counteracts
charge fluctuations not only globally but even locally—should play a substantial role.
Considerations of this type motivated the analysis of interaction effects in the present
context [4].

Figure 4. Hartree (left) and Fock (right) contributions to the free energy. Note that both
diagrams involve the Coulomb vertex0Y .

In a first approximation, local charge-neutrality-restoring processes are represented by
Hartree- and Fock-type diagrams as shown in figure 4. In order to arrive at a physically
complete picture, the simple Hartree–Fock scheme has to be supplemented by more complex
processes [8]. Yet all these contributions to the free energy have in common that they involve
the Coulomb vertex0Y which is absentin the present model. In other words, the high-
dimensional model does not account for the basic physical mechanism responsible for the
suppression of charge fluctuations. It is thus no surprise that the Coulomb interaction does
not play a role.
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What is the physical reason for the smallness of the amplitude0Y in the high-
dimensional spinless model? Diagrams contributing to mesoscopic observables contain the
Coulomb interaction in either of the forms shown in figure 2. The building blocks displayed
in figure 2(a) are just the real-space representation of the Coulomb amplitudes0X and0Y . In
high dimensions the single-particle Green functions appearing in these vertices decay rapidly
in space(G±(x, y) ∼ d−|x−y|/(2a)). Bearing in mind that the Coulomb interaction is spatially
non-diagonal, one may see just by inspection that for any site configuration(x, y, z, z′) two
of the Green functions in the0Y vertex have to be taken between spatially more remote
arguments than in the analogous0X diagram. This is the origin of thed−1-suppression
factor in (29). In other words, it is the spatial structure of the Coulomb interaction which
is responsible for the smallness of0Y . The nearest-neighbour modelling of the Coulomb
interaction is in turn enforced by the absence of spin in our model. We are thus led to the
conclusion that the inclusion the electron spin must be of crucial importance in the analysis
of Coulomb interactions in the high-dimensional case.

In the above argumentation the dimensionality of the model played a central role. One
might consider the subsequent discussion of the consequences for the persistent current
as largely academic if it were not for the fact that the basic reason for the irrelevance
of interactions (the suppression of0Y in the absence of spin) generalizes to the more
relevant cases of low-dimensional models close to half-filling. This may be understood
by considering the momentum-space representation of the Coulomb amplitudes (cf. figure
2(b)) and its quantitative formulation (28). Making use of the definition of the Coulomb
amplitudeU in (25) and of the fact that the Green functions are even in the momentum
arguments, the coupling constants can be rewritten as

0X/Y ∼
∣∣∣∣∣∑
p

F (p)PX/Y (p)

∣∣∣∣∣
2

(32)

whereF(p) = |G+(p)|2 is a function which is sharply peaked at the Fermi surface,PY (p) =
exp(ip1a), p1 is the first (or any other) momentum component, andPX = 1. Consider now a
low-dimensional—say two-dimensional—model close to half-filling. In this case the Fermi
surface takes the form of a square with corners(p1, p2) at (π/a, 0), (0, π/a), (−π/a,0),
and (0,−π/a). The average of the rapidly fluctuating phase factorPY over this ‘Fermi
square’ is zero. We thus find that close to the half-filled case,0Y is negligibly small in
comparison with0X. Note (i) that in the case of a Hubbard (site-diagonal) interaction the
argument does not apply sincePX = PY = 1, and (ii) that the suppression mechanism is
the less effective the more the filling deviates from 1/2. For example, for a quarter-filled
band there are no significant differences between0X and0Y .

This simple argument indicates that the seemingly marginal difference between nearest-
neighbour and on-site interactions can indeed be crucial for the analysis of interaction effects
in weakly disordered metals.

6. Summary

In this paper we have introduced a model for the persistent current carried by spinless
fermions moving in a ring with a high-dimensional cross section. The effects of both
disorder and interactions were considered. It turned out that the non-interacting model
shares practically all of its physical properties with the corresponding low-dimensional
model systems; the effect of the dimensionality merely amounts to an increase in the number
of transverse channels. To deal with the full problem, we adapted the Finkelstein theory of



Persistent currents in high dimensions 8271

interacting disordered Fermi systems to the case of spinless fermions in high dimensions.
An application of this field theory to the calculation of the current showed that the latter is
not affected by interactions in the limitd →∞. This result is most probably a consequence
of the neglect of the electron spin.

We believe that the contribution of this paper is twofold. First, we have identified
a physical mechanism which may be responsible for the importance of the role of the
spin in the persistent-current problem. In both low and high dimensions the electron spin
has to be incorporated in order to allow for the presence of site-diagonal contributions
to the interaction Hamiltonian. These operators are essential for the formation of charge-
neutrality-preserving contributions to the free energy which enhance the persistent current in
real systems. Note that we cannot exclude the possibility of the existence of complementary
mechanisms that are responsible for the relevance of the spin in low dimensions.

Second, the field theoretical formalism presented in this paper may serve as an efficient
tool for the analysis of weakly disordered high-dimensional Fermi systems in general.
(At any rate, the experience gained in ‘low-dimensional’ mesoscopic physics has shown
that complex perturbative analyses are more conveniently performed by field theoretical
methods rather than by direct diagrammatic calculations.) As for the specific problem of
persistent currents, the next steps would be those of accounting for the electron spin and
d−1-corrections.
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Appendix. Momentum summations

In the text we repeatedly encountered momentum summations of the type∑
k⊥

f (ε⊥(k⊥))

where f is smooth. Due to the complex structure of the tight-binding Fermi surface,
expressions of this kind are typically difficult to handle. In the case oflarge dimensionality,
however, statistical arguments can be applied to simplify the computation of the sum. In
this limit, the expression

ε⊥(k⊥) = −
√

2t

d

d−1∑
i=1

cos(kia)

can be interpreted as a sum ofd − 1 � 1 effectively random variables∼ cos(kid) [23].
According to the central-limit theorem,ε⊥ is a Gaussian-distributed variable centred around
0 with width ∼t . Replacing the momentum summation by an integral over the smooth
distribution function ofε⊥, we obtain (7). Typically, the functions that we are going to
encounter are sharply peaked around some value ofε⊥ well inside the band. Under these
circumstances the Gaussian probability distribution in (7) can be replaced by a (technically
easier to handle) box distribution of width 2t . We next apply these ideas to the calculation
of various momentum sums that appeared in the text.
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A1. Calculation ofIm
∑

k G
−(k)

The impurity-averaged Green functions entering this expression are defined as

G±(k) = [µ± i/(2τ)− ε‖(k‖)− ε⊥(k⊥)
]−1

.

Making use of the identity

ImG−(k) = G+(k)G−(k)/(2τ)
we obtain

Im
∑
k

G−(k) ' 1

2τ

N⊥
2t

∑
k‖,o

∫ t

−t
dε

1∣∣µ(k‖)+ i/(2τ)− ε∣∣2 ' πN⊥
t

∑
k‖,o

1= Nπ

2t
(A1)

whereN is the number of tight-binding states with energy smaller thanµ, µ(k‖) = µ−ε(k‖),
and

∑
k‖,o =

∑
k‖,|µ(k‖)|<t is a sum over the open transverse channels. In the second equality

we have made use of the fact that (except for those few values ofk‖ whose energy is close
to the band edges,t −|µ(k‖)| ' 1/τ ) theε-integration can be replaced by an unconstrained
one. Equation (A1) leads to the first identity in (18).

A2. Calculation of
∑

k G
−(k)G+(k + q)

We first expand this expression to lowest non-vanishing order in the small momentum
q ∼ 1/l � k ∼ 1/a. As the result we obtain∑
k

G−(k)G+(k + q) =
∑
k

(
G−(k)G+(k)+ 8t2a2

[
sin2(kda)q

2
‖

+ 1

2d

d−1∑
i=1

sin2(kia)q
2
i

]
G−(k)G+(k)3

)
+ · · ·

where the ellipsis denotes terms which either vanish by symmetry (terms that are linear inq

or proportional toqiqj , i 6= j ) or oscillate rapidly as a function of the momentumk (terms
containing factors cos(kia)). We next observe that the sin2(kia) factors average to 1/2.
The momentum summation over the Green functions can then be performed in complete
analogy to the calculation in the preceding subsection. As a result we obtain the second
line in (18).

A3. Calculation of Coulomb amplitudes

The amplitude0X is readily calculated, as it decays into a product of factors which have
already been computed in section 6:

0X = U(0)

V

[∑
k

G+(k)G−(k)

]2

= U(2πνadτ)2.

The calculation of0Y is more intricate. We first rewrite0Y as

0Y = U

V
∑
kk′
|G+(k)|2 cos((k − k′)1a)|G−(k′)|2 = U

V

(∑
k

|G+(k)|2 cos(k1a)

)2

.

In the first equality use has been made of the fact that all cosine terms appearing in the
definition (25) of the Coulomb amplitude give the same contribution (at this point we are
dealing with a ‘local’ quantity and it is not necessary to single out thed-component).
The second equality holds because the functionsG±(k) are even ink. To compute the
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momentum sum to lowest order in 1/d, we expand the product of Green function in powers
of cos(k1a):

|G+(k)|2 = |G+(k)|2∣∣cos(k1a)=0+
(

2

d

)1/2

t ∂µ|G+(k)|2
∣∣
cos(k1a)=0 cos(k1a)+ · · · .

This leads to∑
k

|G+(k)|2 cos(k1a) ' 1√
2d
t ∂µ

∑
k

|G+(k)|2

where we have used the facts that the cos(k1a)
2 factor averages to 1/2 and that the condition

that theµ-derivative be evaluated at cos(k1a) = 0 is inessential in the larged-limit. Noting
that ∑

k

|G+(k)|2 = 2πτν(µ)V

whereν(µ) is the (in principleµ-dependent) density of states, we arrive at

0Y ' V
2d
(2πτ t ∂µν(µ))

2.

Besides the 1/d factor,0Y differs from0X in the presence of the derivative operatort ∂µ
acting onν(µ). In our model, the density of states isµ-independent (apart from as regards
the values ofµ which are closer than 1/τ to the band edges; cf. the remarks made at
the beginning of this appendix), which means that theµ-derivative leads to still further
suppression. All in all, we conclude that0Y is negligibly small as compared with0X.
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[19] Römer R and Punnoose A 1995Phys. Rev.B 52 14 809
[20] Giamarchi T and Shastry B S 1995Phys. Rev.B 51 10 915
[21] As an aside, we mention that a diagrammatic Fock calculation utilizing the unrenormalized Thomas–Fermi

interaction [7] has led to results whichdo conform with the experiment. However, this is probably a
fortuitous coincidence.

[22] Metzner W and Vollhardt D 1989Phys. Rev. Lett.62 324
[23] Müller-Hartmann E 1989Z. Phys.B 74 507
[24] Vlaming R, Uhrig G S and Vollhardt D 1992J. Phys.: Condens. Matter4 773 (erratum4 10 103)



8274 J Barth and A Altland

[25] Uhrig G S and Vlaming R 1993J. Phys.: Condens. Matter5 2561
[26] Cheung H F, Gefen Y, Riedel E K and Shih W H 1988Phys. Rev.B 37 6050

Cheung H F, Gefen Y, Riedel E K and Shih W H 1988IBM J. Res. Dev.32 34
[27] The Byers and Yang theorem [28] states that the persistent current is aφ0-periodic quantity.
[28] Byers N and Yang C N 1961Phys. Rev. Lett.7 46
[29] Negele J and Orland H 1988Quantum Many Particle Systems(Redwood City, CA: Addison-Wesley)
[30] Finkelstein A M 1990 Electron Liquids in Disordered Conductors (Soviet Scientific Reviews 14)ed

I M Khalatnikov (New York: Harwood Academic)
[31] Finkelstein A 1983JETP Lett.37 517

Finkelstein A 1984Sov. Phys.–JETP59 212
[32] Oppermann R 1985Z. Phys.B 61 89
[33] Note that in the coordinate basis the time-reversal operation amounts to a complex conjugation.
[34] Altland A, Efetov K B and Iida S 1993J. Phys. A: Math. Gen.26 3545
[35] Due to the symmetry law (12), the second term on the rhs of (26) represents both the first and the second

term in figure 2(b).
[36] Coulomb interactions tend to suppress fluctuations in the charge density. For this reason, one may anticipate

that it is not necessary to implement the condition of global charge conservation manually as it was in
the case of the non-interacting model. Previous calculations which gave a non-vanishing result in the
interacting/grand-canonical case support this supposition.

[37] Efetov K B 1983 Adv. Phys32 53
[38] Efetov K B 1997 Supersymmetry in Disorder and Chaos(New York: Cambridge University Press)
[39] Altshuler B L, Kravtsov V E and Lerner I V 1991 Mesoscopic Phenomena in Solidsed B L Altshuler,

P A Lee and R A Webb(Amsterdam: Elsevier)


